Application of Neural Networks for Foreign Exchange Rates Forecasting with Noise Reduction

نویسندگان

  • Wei Huang
  • Kin Keung Lai
  • Shouyang Wang
چکیده

Predictive models are generally fitted directly from the original noisy data. It is well known that noise can seriously limit the prediction performance on time series. In this study, we apply the nonlinear noise reduction methods to the problem of foreign exchange rates forecasting with neural networks (NNs). The experiment results show that the nonlinear noise reduction methods can improve the prediction performance of NNs. Based on the modified DieboldMariano test, the improvement is not statistically significant in most cases. We may need more effective nonlinear noise reduction methods to improve prediction performance further. On the other hand, it indicates that NNs are particularly well appropriate to find underlying relationship in the environment characterized by complex, noisy, irrelevant or partial information. We also find that the nonlinear noise reduction methods work more effectively when the foreign exchange rates are more volatile.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

Comparisons of the Different Frequencies of Input Data for Neural Networks in Foreign Exchange Rates Forecasting

We compare the predication performance of neural networks with the different frequencies of input data, namely daily data, weekly data, monthly data. In the 1 day and 1 week ahead prediction of foreign exchange rates forecasting, the neural networks with the weekly input data performs better than the random walk models. In the 1 month ahead prediction of foreign exchange rates forecasting, only...

متن کامل

Computational Intelligence Methods for Financial Forecasting

Forecasting the short run behavior of foreign exchange rates is a challenging problem that has attracted considerable attention. High frequency financial data are typically characterized by noise and non–stationarity. In this work we investigate the profitability of a forecasting methodology based on unsupervised clustering and feedforward neural networks and compare its performance with that o...

متن کامل

Selection of the Appropriate Lag Structure of Foreign Exchange Rates Forecasting Based on Autocorrelation Coefficient

We propose a new criterion, called autocorrelation coefficient criterion (ACC) to select the appropriate lag structure of foreign exchange rates forecasting with neural networks, and design the corresponding algorithm. The criterion and algorithm are data-driven in that there is no prior assumption about the models for time series under study. We conduct the experiments to compare the predictio...

متن کامل

Foreign Exchange Rates Forecasting with Neural Networks

| In this paper, a neural network based foreign exchange rates forecasting method is discussed. Neural networks with time series and technical indicators as inputs are built to capture the underlying \rules" of the movement in currency exchange rates. Before using historical data to train the neural networks, the traditional R/S analysis is used to test the \eeciency" of each market. The study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007